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Abstract. We investigate the ground-state magnetic long-range order of quasi-one-dimensional quantum
Heisenberg antiferromagnets for spin quantum numbers s = 1/2 and s = 1. We use the coupled cluster
method to calculate the sublattice magnetization and its dependence on the inter-chain coupling J⊥. We
find that for the unfrustrated spin-1/2 system, an infinitesimal inter-chain coupling is sufficient to stabilize
magnetic long-range order, in agreement with results obtained by other methods. For s = 1, we find that
a finite inter-chain coupling is necessary to stabilize magnetic long-range order. Furthermore, we consider
a quasi one-dimensional spin-1/2 system, where a frustrating next-nearest neighbor in-chain coupling is
included. We find that for stronger frustration as well, a finite inter-chain coupling is necessary to have
magnetic long-range order in the ground state, and that the strength of the inter-chain coupling necessary
to establish magnetic long-range order is related to the size of the spin gap of the isolated chain.

PACS. 75.10.Jm Quantized spin models – 75.10.Pq Spin chain models – 75.50.Ee Antiferromagnetics

1 Introduction

Low-dimensional quantum antiferromagnets have attrac-
ted much attention as model systems where strong quan-
tum fluctuations may destroy magnetic long-range order
in the ground state (GS) [1]. In particular, the one-dimen-
sional (1d) quantum Heisenberg antiferromagnet (HAFM)
does not exhibit magnetic long-range order (LRO). In ad-
dition, there is a basic difference between half-integer and
integer antiferromagnetic Heisenberg chains [2]. While the
1d HAFM with half-integer spin quantum number exhibits
a gapless excitation spectrum and a power-law decay of
spin-spin correlations, a faster exponential decay of spin-
spin correlations — accompanied by a finite excitation gap
∆ (spin gap) — is observed for integer-spin 1d HAFM.
However, it is known that for the 1d spin-half HAFM a
frustrated next-nearest neighbor exchange coupling may
also open an excitation gap (for a more detailed discussion
of 1d spin systems, see [3]). For the formation of magnetic
LRO in HAFM, the transition to two-dimensional (2d) lat-
tices is crucial. The HAFM on 2d bipartite lattices exhibits
magnetic LRO at zero temperature and only competing
interactions may destroy LRO (for a more detailed discus-
sion of 2d spin systems, see [4,5]). In real materials we are
often faced with the situation that the nearest-neighbor
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in-chain coupling J1 is dominant but an inter-chain cou-
pling J⊥ is also present. A very weak inter-chain coupling
even seems to be a rare exception, see e.g. reference [6].
Therefore, the study of quasi 1d quantum HAFM’s, i.e.
systems where the in-chain couplings are larger than the
inter-chain couplings, are — on one hand — of basic in-
terest in connection with the dimensional crossover from
one dimensions to two, and on the other hand, of inter-
est for the interpretation of experiments. The quasi 1d
spin-1/2 HAFM has been studied in several papers [7–15]
in recent years. A main focus of these studies has been
on the estimation of the critical inter-chain coupling Jc

⊥
where the transition between the phase with magnetic
LRO and the magnetically disordered phase takes place.
The answers given in the literature to this question are
contradictory and not completely conclusive. While some
papers find indications for a finite Jc

⊥ [8–10], others find
Jc
⊥ = 0 [7,11–15] which seems to be more plausible, given

that the GS of the 1d spin-1/2 HAFM is not gapped. In
particular, data obtained by the quantum Monte Carlo
method (QMC) [11,14,15], which is precise for unfrus-
trated spin models, strongly support the result Jc

⊥ = 0.
The behaviour of the quasi 1d spin-1 HAFM might be
different from its spin-1/2 counterpart, but is less stud-
ied so far. Indeed, the existing studies of the spin-1 case
find indications for a finite Jc

⊥ [7,14–18] which can be at-
tributed to the spin gap between the singlet GS and the
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magnetic excitations. In reference [7] a lower bound of Jc
⊥

was estimated as Jc
⊥ ≥ 0.025J1, whereas an upper bound

Jc
⊥ ≤ 0.1892J1 was given in reference [18]. Recent QMC

calculations [14,15,17] yield Jc
⊥ ≈ 0.043–0.044J1, which is

only about 10% of the Haldane gap ∆.
To get experimental input for the theoretical work,

materials with a quasi 1d behavior and a small coupling
ratio between inter- and in-chain exchange are needed. Ex-
perimentally, materials such as Sr2CuO3, Ca2CuO3 [19,
20], Sr2V3O9 [21], BaCu2Si2O7 [22], Sr2Cu(PO4)2,
Ba2Cu(PO4)2 [23] are quite good examples of quasi
1d spin-1/2 antiferromagnets with “not-too-large” inter-
chain coupling. The spin-1/2 antiferromagnet showing the
most perfect 1d behavior so far is SrCu(PO4)2 [6]; this ma-
terial has the smallest ratio kBTN/J1 ∼ 6×10−4 between
the Néel temperature TN and the in-chain coupling J1. All
of the above-mentioned materials show magnetic LRO be-
low TN , although their coupling ratio is remarkably small.
Contrary to the spin-1/2 materials in some quasi-1d spin-1
antiferromagnets such as Ni(C2H8N2)2NO2(ClO4) [24,25]
and other Ni-compounds, see reference [24], no Néel LRO
has been observed as measured down to very low temper-
atures.

Another interesting system is the 1d spin-1/2 HAFM
with frustrated second neighbor interaction J2 > 0. At
J2 = 0.2411J1 [26] a transition to a dimerized state with
a spin gap and an exponential decay of the spin-spin cor-
relation occurs. Hence, for J2 > 0.2411J1 the effect of the
inter-chain coupling on the GS behavior may be different
from the case with J2 < 0.2411J1. This problem has not
been discussed in detail in the literature so far.

In the present paper we apply the coupled cluster me-
thod (CCM) [27,28] to study the GS LRO of quasi 1d
HAFM with spin quantum numbers s = 1/2 and s = 1.
This approach is a universal and powerful method of quan-
tum many-body theory. Though the CCM is a fairly new
method in the field of quantum spin systems, in recent
years it has been developed to higher levels of approxi-
mation which allows its application to quantum spin sys-
tems with more and more success (for recent reviews, see
Refs. [29,30]). In particular, the CCM has the advantage
that it can be applied to frustrated quantum spin systems
with arbitrary dimensions. Though, concerning the preci-
sion of the results, the CCM at the present level of ap-
proximation probably cannot compete with the QMC, it
allows to find new results for frustrated systems, for which
the QMC fails due to the so-called sign problem. On the
other hand, the comparison of CCM results with QMC
data for the unfrustrated models can be considered as a
benchmark test of the CCM and is therefore of interest
from an applied method point of view.

The Hamiltonian of the quasi 1d frustrated HAFM is
written as

H =
∑

n

∑

i

(
J1si,n · si+1,n + J2si,n · si+2,n

)

+
∑

i

∑

n

J⊥si,n · si,n+1. (1)

J

J

J

1

2

Fig. 1. Illustration of the quasi one-dimensional HAFM with
the in-chain nearest-neighbor bonds J1, the frustrating in-chain
next-nearest neighbor bonds J2, and the inter-chain bonds J⊥,
cf. the Hamiltonian (1). All bonds are antiferromagnetic.

The index n labels the chains and i the lattice sites within
a chain n. The model is illustrated in Figure 1. While for
spin quantum number s = 1 we consider only the model
without frustration (J2 = 0), for s = 1/2, we will discuss
both cases, J2 = 0 and J2 > 0.

2 The coupled cluster method (CCM)

In this section, the CCM formalism will first briefly be
outlined. For further details the interested reader is re-
ferred to references [29–39]. The starting point for the
CCM calculation is the choice of a normalized reference or
model state |Φ〉, together with a set of (mutually commut-
ing) multi-configurational creation operators {C+

L } and
the corresponding set of their Hermitian adjoints {CL},

〈Φ|C+
L = 0 = CL|Φ〉 ∀L �= 0, C+

0 ≡ 1 (2)

[C+
L , C+

J ] = 0 = [CL, CJ ]. (3)

The operators C+
L (CL) are defined over a complete set of

many-body configurations denoted by the set-indices {L}.
For the set {|Φ〉, C+

L } the CCM parametrization of the ex-
act ket and bra GS eigenvectors |Ψ〉 and 〈Ψ̃ | of our many-
body system are given by

|Ψ〉 = eS |Φ〉 , S =
∑

L �=0

aLC+
L (4)

〈Ψ̃ | = 〈Φ|S̃e−S , S̃ = 1 +
∑

L �=0

ãLCL. (5)

The CCM correlation operators, S and S̃, contain the cor-
relation coefficients, aL and ãL, which have to be calcu-
lated. Once these values are known, all the GS properties
of the many-body system can be derived from them. To
find the GS correlation coefficients aL and ãL, we simply
require that the expectation value H̄ = 〈Ψ̃ |H |Ψ〉 (GS en-
ergy) is a minimum with respect to the entire set {aL, ãL},
which leads to the GS CCM ket-state and bra-state equa-
tions

〈Φ|C−
L e−SHeS|Φ〉 = 0 ; ∀L �= 0 (6)

〈Φ|S̃e−S [H, C+
L ]eS|Φ〉 = 0 ; ∀L �= 0. (7)
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For the spin systems considered herein, we choose the Néel
state with spins aligned in the z-direction as the reference
state. The reasoning behind this choice is evident for the
unfrustrated case [32], since the Néel state is the classical
GS for J2 = 0. For the s = 1/2 case, the frustrated model
(i.e. J2 > 0) is considered below as well. Note that the
classical GS is an incommensurate spiral state for J2 >
0.25J1. However, the quantum GS for J⊥ = 0 does not
exhibit spiral ordering for values of J2 less than J2 ∼
0.5J1, but it is rather a collinear state. [30,41–43] Hence,
the Néel state is an appropriate reference state for 0 <
J2 � 0.5J1 as well [30].

To treat each side equivalently, we perform a rotation
of the local axis of the up spins, such that all spins in
the reference state lign in the negative z-direction. In this
new set of local spin coordinates the reference state and
the corresponding creation operators C+

L are given by

|Φ̂〉 = | ↓↓↓↓ · · · 〉 ; C+
L = ŝ+

i , ŝ+
i ŝ+

j , ŝ+
i ŝ+

j ŝ+
k , . . . , (8)

where the indices i, j, k, ... denote arbitrary lattice sites.
For the discussion of the GS Néel LRO, we have to cal-
culate the order parameter (sublattice magnetization) M ,
which is given within the CCM scheme by

M = − 1
N

〈Ψ̃ |
N∑

i=1

ŝz
i |Ψ〉. (9)

The CCM formalism becomes exact if we take into account
all possible multispin configurations for the correlation op-
erators S and S̃. However, in general, this is impossible
to do in practice for a many-body quantum system. It is
therefore necessary to use approximation schemes in order
to truncate the expansions of S and S̃ in equations (4, 5)
in any practical calculation. A very general approxima-
tion scheme is the so-called SUBn-m approximation. In
this approximation, all correlations in the correlation op-
erators S and S̃ are taken into account, as long as they
span a range of no more than m contiguous sites and con-
tain only n or fewer spins. In most cases, however, the
SUBn-n scheme is used (i.e., with n = m), and in these
cases, it is referred to as the LSUBn scheme (for spin-1/2
systems). To find all the different (i.e. fundamental) con-
figurations entering S and S̃ for a given level of SUBn-n
approximation, we use the lattice symmetries.

Although there is no theory available for how the re-
sults of the SUBn-n approximations scale with n, there
is nevertheless a great deal of experience in how to ex-
trapolate the raw CCM SUBn-n data properly to n →
∞ [30–33,36,38,39]. The best results for the extrapolation
of the order parameter are obtained if the poor SUB2-
2 data are omitted. Previously, for systems showing an
order-disorder quantum phase transition [30,36,38], a lead-
ing “power-law” extrapolation for the order parameter

M(n) = a0 + a1

(
1
n

)a2

, (10)

has been used successfully to determine the phase tran-
sition points. In equation (10) the leading exponent a2 is

Fig. 2. Extrapolation of the GS order parameter (sublattice
magnetization) M scaled by the spin quantum number s for the
pure unfrustrated s = 1/2 chain (i.e. J⊥ = 0 and J2 = 0). The
two methods of extrapolation corresponding to equations (10)
and (11) are indicated by “extrapolation1” and “extrapola-
tion2”, respectively.

determined directly from the SUBn-n data. Alternatively,
as has been discussed recently in reference [39], an ex-
trapolation scheme with a fixed exponent but including
an additional power in 1/n, i.e.

M(n) = b0 +
(

1
n

)1/2 (
b1 + b2

1
n

)
, (11)

can also be used to find the phase transition point. The
extrapolation of the order parameter is illustrated in Fig-
ure 2 for one particular data set - namely, for the unfrus-
trated s = 1/2 chain with zero inter-chain coupling, i.e.
at the expected critical point. Note that when using the
extrapolation of equation (10), the exponent a2 for the
considered data set is a2 = 0.414, which is a value not far
from the fixed leading exponent 1/2 used in equation (11).
Below, we will use both extrapolation formulas to deter-
mine the critical inter-chain coupling Jc

⊥, which will natu-
rally yield slightly different values for Jc

⊥. We will use this
difference as an estimation of the reliability of our results.

Using parallel processing [35,40] we are able to use the
CCM up to the SUB10-10 approximation for the spin-1/2
system, and up to the SUB8-8 approximation for the spin-
1 system, which corresponds to the solution of more than
104 coupled nonlinear equations.

3 Results

The results for the dependence of the order parameter M
scaled by the spin quantum number s on the inter-chain
coupling J⊥ are shown in Figures 3–5. In those figures, we
show the raw CCM SUBn-n data used for the extrapola-
tion, as well as the results for the extrapolation n → ∞,
cf. Section 2.

For the unfrustrated quasi 1d HAFM with s = 1/2 we
find that for J1 ≥ J⊥ � 0.2J1, the variation of the or-
der parameter M with J⊥ is small, see Figure 3. Only for
J⊥ < 0.2J1 is the sublattice magnetization significantly
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Fig. 3. The dependence of the GS order parameter (sublattice
magnetization) M scaled by the spin quantum number s on
the inter-chain coupling J⊥ for the unfrustrated s = 1/2 quasi
1d HAFM. The two methods of extrapolation corresponding
to equations (10) and (11) are indicated by “extrapolation1”
and “extrapolation2”, respectively.

Fig. 4. The dependence of the GS order parameter (sublattice
magnetization) M scaled by the spin quantum number s on
the inter-chain coupling J⊥ for the unfrustrated s = 1 quasi
1d HAFM. The two methods of extrapolation corresponding
to equations (10) and (11) are indicated by “extrapolation1”
and “extrapolation2”, respectively.

diminished. As demonstrated in Figure 3, it is evident
that both extrapolation schemes lead to similar results.
Using the extrapolation formula equation (10), we obtain
the critical inter-chain coupling Jc

⊥ ∼ 0.003J1 at which
the Néel LRO disappears . On the other hand, the ex-
trapolation based on equation (11) leads to a finite but
very small order parameter M ≈ 0.01. These results are
consistent with the conclusion that for the unfrustrated
spin-1/2 system, an infinitesimally small inter-chain cou-
pling is sufficient to stabilize antiferromagnetic LRO. This
statement supports the findings of references [7,11–14] and
are related to the gapless GS of the strictly 1d s = 1/2
HAFM.

Next, we consider the unfrustrated s = 1 HAFM. Here
the number of fundamental configurations in the CCM
SUBn-n approximation is much larger than for s = 1/2,
and we are able to present CCM data up to n = 8. Hence,
the extrapolation for s = 1 is expected to be less reliable

Fig. 5. The GS order parameter (sublattice magnetization)
M scaled by the spin quantum number s in dependence on the
inter-chain coupling J⊥ for the frustrated s = 1/2 quasi 1d
HAFM. The two variants of extrapolation according to equa-
tions (10) and (11) are indicated by “extrapolation1” and “ex-
trapolation2”, respectively. (a) J2 = 0.35J1 ; (b) J2 = 0.45J1 .

than for s = 1/2, for which CCM data up to n = 10 are
available. Again, for J1 ≥ J⊥ � 0.2J1, the variation of
M with J⊥ is small, see Figure 4. However, M/s is sig-
nificantly larger than as calculated for s = 1/2, indicating
the decrease of quantum fluctuations in the square-lattice
HAFM with increasing spin quantum number s. A strong
reduction of the order parameter occurs for J⊥ ∼ 0.2J1.
Finally, M vanishes at a critical value Jc

⊥ > 0, i.e. a fi-
nite inter-chain coupling is necessary to stabilize GS Néel
LRO. However, both extrapolation schemes lead to dif-
ferent numerical values for Jc

⊥, namely Jc
⊥ ∼ 0.1J1 us-

ing equation (10) but Jc
⊥ ∼ 0.02J2 using equation (11).

Both values differ by approximately a factor of 2 from
the QMC results [14,15,17] Jc

⊥ ≈ 0.043–0.044J1. This dif-
ference gives an indication of the accuracy of the CCM
including SUBn-n data up to n = 8.

Next, we consider the frustrated quasi 1d s = 1/2
HAFM for which QMC calculations are not possible. The
classical GS for J2 > 0.25J1 is an incommensurate spi-
ral state independent of the value of J⊥. In contrast to
the classical model, for the strictly 1d problem (J⊥ = 0)
the quantum GS does not exhibit spiral correlations for
0.25J1 < J2 � 0.5J1 [30,41–43], but is gapped with a
spin gap ∆ strongly varying with J2 [42,44]. However, in
presence of an appreciable inter-chain coupling J⊥, spi-
ral correlations may appear in the quantum model as
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Fig. 6. The critical inter-layer coupling Jc
⊥ in dependence

on the frustration parameter J2 for the frustrated s = 1/2
quasi 1d HAFM. The two variants of extrapolation according
to equations (10) and (11) are indicated by “extrapolation1”
and “extrapolation2”, respectively.

well [30,45]. Therefore, we restrict our calculations to
J⊥ < 0.5J1 and to J2 ≤ 0.46J1, where the CCM works
well when based on a collinear reference state. The spin
gap ∆ of the 1d problem (J⊥ = 0) was found to be very
small for J2 < 0.4J1, but ∆ increases rapidly between
0.4J1 < J2 < 0.5J2 [42,44].

The results for M/s versus J⊥ for J2 = 0.35J1 and
J2 = 0.45J2 are shown in Figure 5. For J2 = 0.35J1

the critical inter-chain coupling is Jc
⊥ ∼ 0 when using the

extrapolation equation (10) and is Jc
⊥ ∼ 0.014J1 when

using the extrapolation equation (11). Knowing that for
J2 = 0.35J1 and J⊥ = 0, the spin gap should be finite [26]
but very small [42,44], a zero or small Jc

⊥ is reasonable.
On the other hand, for J2 = 0.45J1, where the spin gap
for J⊥ = 0 is ∆ ∼ 0.13J1 [42,44] we already obtain quite
a large value of Jc

⊥ ∼ 0.20J1 using the extrapolation of
equation (10) and Jc

⊥ ∼ 0.15J1 using the extrapolation of
equation (11)). Interestingly, the ratio Jc

⊥/∆ is seems to be
larger than for the unfrustrated s = 1 HAFM. The varia-
tion of Jc

⊥ with J2 is shown in Figure 6. Both extrapolation
schemes yield qualitatively similar results. The variation
of Jc

⊥ with J2 is quite similar to the variation of the spin
gap with J2 [42,44]. However, we observe a monotonic in-
crease of the ratio R = Jc

⊥/∆ from R ∼ 0.8 to R ∼ 1.6 in
the region 0.4J1 ≤ J2 ≤ 0.46J2.

The variation of the order parameter M/s with frus-
tration is illustrated in Figure 7, where for the sake of clar-
ity, only the data obtained using an extrapolation scheme
equation (10) are shown. As expected, frustration weakens
the magnetic order and M becomes smaller with increas-
ing J2. Obviously, for fixed but not too large inter-chain
coupling J⊥, a quantum phase transition between Néel
LRO and a magnetically disordered phase can be driven
by frustration. However, In similarity to recent findings
for the quasi-2d J1 − J2 model [38], it is likely that for
stronger inter-chain coupling no magnetically disordered
phase appears.

Let us finally mention that the quantum phase tran-
sition in the frustrated model is interesting from a more

Fig. 7. The GS order parameter (sublattice magnetization) M
scaled by the spin quantum number s for the frustrated s = 1/2
quasi 1d HAFM in dependence on the frustration parameter
J2 and for various strengths of the inter-chain coupling J⊥.

general point of view. For 0.2411J1 < J2 � 0.5J1, the
model exhibits two ground state phases, each breaking
different symmetries, namely (i) the rotationally invari-
ant, spontaneously dimerized phase for zero (or small) J⊥
breaking the translational symmetry of the lattice, and (ii)
the Néel phase, breaking the spin rotational symmetry. A
continuous transition between the dimerized phase and
the Néel ordered phase is prohibited within the Landau
theory [46]. Hence three different scenarios are possible.
First, that there is a (small) disordered featureless spin-
liquid phase between the dimerized and the Néel phase;
second, that there is a first order transition between the
dimerized and the Néel phase, and, third and most inter-
esting, that the above-described transition is a candidate
for a deconfined quantum critical point [46]. This ques-
tion cannot be answered within the current approach but
deserves further consideration.

To summarize, we find that the transition from the
non-magnetic 1d GS to the magnetically ordered 2d GS
in quasi 1d quantum HAFM’s can be well described by
the CCM if higher orders of approximation are used. Our
results indicate that this transition, driven by the inter-
chain coupling J⊥, is related to the excitation gap of the
strictly 1d HAFM, i.e. at J⊥ = 0. If the 1d quantum GS is
gapless, most likely the magnetic LRO sets in immediately
when J⊥ is switched on, whereas for gapped GS’s, a finite
J⊥ is necessary to establish magnetic LRO in the GS.

This work was supported by the DFG (project Ri615/16-1).
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